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Abstract
The oscillation of a photocurrent produced by illumination of a mesoscopic metal film as a
function of external magnetic field is considered. The orientation of the magnetic field B is
assumed to be arbitrary. The thickness of the film is supposed to be much larger than the
penetration depth of light but much smaller than the electron mean free path due to the
scattering in the bulk of the sample. The oscillation of the current in the plane of light incidence
is analyzed.

Our theory predicts oscillations of two types. The first type can exist for any constant
energy surface, including spheres. The second type can exist only for nonspherical constant
energy surfaces. The amplitudes of the oscillations of the first and second type are proportional,
respectively, to B−3 and B−3/2.

1. Introduction

The purpose of the present paper is the theoretical investigation
of an oscillatory dependence of the photocurrent in mesoscopic
metal films as a function of tilted external magnetic field B.
Previously, in the papers by Gurevich et al [1] and Gurevich
and Laiho [2], it was shown experimentally and theoretically
that light falling obliquely on a plane surface of a normal metal
sample produces a surface photocurrent. This phenomenon has
some similarity to the drag of electrons caused by traveling
electromagnetic waves in semiconductors which was first
considered by Barlow [3] (see also [2] and the references
therein). It is closely related to the photogalvanic effect in
semiconductors—see the papers by Magarill and Entin [4] and
Alperovich et al [5]. In these papers, as well as in the present
one, the considered effect is associated with diffuse scattering
of electrons from the surface(s) of the sample.

The experimental paper by Böhm et al [6], in which
the magnetooscillation under illumination of tungsten single
crystals was investigated, has motivated the present theory.
In that paper the influence of a strong magnetic field,
in combination with nonhomogeneous illumination of the
sample, on ballistic carrier transport was studied.

The most important difference between effects in
semiconductors and metals is in the conditions for observation
of this phenomenon. Because of a comparatively small
conductivity of semiconductors, one usually measures the
voltage built up across the sample. In metals, because of their

high conductance, only direct measurement of the photocurrent
is usually possible as the voltage is quite small. Besides, the
physical situation in metals is extremely nonhomogeneous as
the light penetration depth (κ−1) is usually about 10−6 cm. This
length for a number of cases of interest is much smaller than
both the thickness of the film a and the electron mean free
path l while the situation in semiconductors (at least regarding
the electron mean free path) is usually the opposite. The
term mesoscopic is widely used to describe physical effects
that are sensitive to dimensions of the sample. In the present
paper we will assume that the thickness of a sample is smaller
than the electron mean free path. Such samples we will call
mesoscopic.

An oscillation of the photocurrent in a mesoscopic metal
film as a function of applied magnetic field for a special
geometry and the simplest assumptions about the electron
dispersion law are investigated theoretically in [7]. Only
the geometry where magnetic field B is perpendicular to the
film surface has been considered. This assumption has been
fundamentally essential in working out the theory as, in this
case, the plane where the electron motion is finite coincides
with the plane of the film.

However, the experimental setup usually demands a
nonperpendicular field orientation. This poses an entirely
new problem for the theory as the plane where the motion of
electrons becomes finite does not coincide with the plane of
the film. In addition, it is desirable to calculate the period of
oscillation for an arbitrary spectrum and find out whether new
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types of oscillation can exist for more complicated electron
dispersion laws. These points mean that a new mathematical
apparatus should be developed to solve the problem. To treat
the case where the magnetic field is tilted, as well as the
electron spectrum being of an arbitrary form, one should solve
a partial derivative differential equation. This problem is much
more involved.

An appropriate approach has been developed in the paper
by Gurevich [8] who considered the magnetooscillation of
conductivity of Sondheimer [9] type in a metal for an arbitrary
electron spectrum and magnetic field direction. (See also
the book by Abrikosov [10], section 8.5 where a very good
and detailed review of these effects is given.) However,
only the spatially homogeneous case is treated in these
papers. Therefore one has to modify this approach for a
nonhomogeneous situation characteristic of the photocurrent
in metals.

In the present paper we will consider an arbitrary
orientation of magnetic field in the plane of light incidence
and show that the theory with an arbitrary electron spectrum
predicts oscillation of two types. The first type can be called
the limiting point oscillation as it is associated with a limiting
point of the constant energy surface for a given direction
of magnetic field B. A limiting point is determined by the
maximal value of the electron quasimomentum in the direction
of magnetic field. Near such a point the electron trajectories
in the plane of the plate have small dimensions. As a result,
such an oscillation dies out rather quickly with magnetic field
B . This type of oscillation can exist for any sort of closed
constant energy surface, including spheres.

The second type of oscillation does not exist for spheres
but can exist for more complicated sorts of constant energy
surfaces. It is associated with the situation where the
helical pitch of the electron trajectory in a magnetic field
passes through an extremum. In this case the electrons have
comparatively large trajectories in the plane of the plate. The
authors of [6] claim that the oscillations they have observed
belong to this type.

The amplitude of the oscillation of the first kind is
proportional for high magnetic fields B to B−3 while the
amplitude of the oscillation of the second kind is proportional
to B−3/2 for the effect treated in the present paper. So
inhomogeneity of the perturbation increases by 1 the powers
of magnetic field in the asymptotic (where the oscillation
is periodic) as compared with oscillation of Sondheimer
type [8, 9]. Naturally, the period of the oscillation depends on
the angle χ between the magnetic field B and the perpendicular
to the surface of the film.

2. Nonequilibrium distribution function in valence
band calculations of photocurrent

2.1. Boltzmann equation

As mentioned in section 1 we consider the problem that is
similar to the one treated in [7] but for the case where magnetic
field is tilted and the electron spectrum is more complicated.
Accordingly, we should reformulate the Boltzmann equation

Z
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ξ

ζ

Figure 1. Rectangular coordinate systems (x, y, z) and (ξ, η, ζ ). The
z-axis is parallel to B while x- and y-axes are perpendicular to it.
The ζ -axis is perpendicular to the plane of the film. It makes angle χ
with the z-axis. ξ - and x-axes are in the plane of propagation of the
light beams. y- and η-axes coincide.

for this case. We shall not discuss the limits of its applicability,
referring the reader instead to the paper [7] where they are
discussed in detail.

Below we will use the following rectangular coordinate
systems—see figure 1. The z-axis is parallel to B while the
x-and y-axes are perpendicular to it. The ζ -axis is assumed
to be perpendicular to the plane of the film. It makes angle
χ with the z-axis. The ξ - and x-axes are in the plane of
propagation of the light beams; the y- and η-axes coincide.
In the present paper the magnetic field dependence of the
photoinduced current density j ξ is investigated. Here j ξ is the
ξ -component of the dc current density averaged over the film
cross section.

The oscillation we consider is due to diffuse scattering
of the electrons from the surfaces of the film. Their
distribution function is a nonequilibrium one due to the
interband transitions from the lower band (1) to the upper one
(2) brought about by the ac electric field of light E. One can
easily check that the transition probability of an electron is
invariant to the change of sign of the electron quasimomentum.
Therefore the number of electrons generated by light just near
the surface ζ = 0 and moving from the surface and to the
surface are the same. If the scattering is diffuse and the
penetration depth of light is much smaller than the sample
thickness a the electrons moving from the surface ζ = a
give no contribution to the oscillation as this surface is not
illuminated. Due to the electrons moving from the surface
ζ = 0 the oscillation of j ξ as a function of external field B
takes place. This is why we will consider only the electrons
moving from the surface ζ = 0 illuminated by light. (If
the electron reflection from the surfaces were specular, current
oscillation of this type would not exist because of invariance of
the transition probability to the change of sign of the electron
quasimomentum.)
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The Boltzmann equation for this case can be written in the
form

vζ

∂ fp

∂ζ
+ �

∂ fp

∂τ
+

[
∂ fp

∂ t

]
coll

= d exp (−κζ ), (1)

where the subscript ‘coll’ indicates the collision term and d is
given by

d = π

2h̄

(
e

m0ω

)2

|E0P21(p, p′)|2δ(ε(1) + h̄ω − ε(2)). (2)

Here fp is the electron distribution function, E0 is the
amplitude of the electric field, e is the electron charge, ω is
the frequency of light, m0 is the free electron mass, P21(p, p′)
is the interband transition amplitude, and

� = eB

m∗c
(3)

is the cyclotron frequency of an electron in a magnetic field,

m∗ = 1

2π

∂S

∂ε
(4)

is the electron cyclotron effective mass on its trajectory in a
magnetic field; these quantities depend on the electron energy
ε and pz . S is the area of the cross section of the surface
ε(p) = const by the plane pz = const, τ is a dimensionless
time of motion of an electron on its trajectory in a magnetic
field (see for instance the book by Abrikosov [10], section 5.1)
and v is the electron velocity on the trajectory. We assume that
the characteristic scale of the electromagnetic wave variation is
bigger than the scale of variation of the electron wavefunction.
This means that in the matrix element∫

d3 p�1(p − k/2)�∗
2 (p + k/2) (p + k/2, E(k))

one can neglect the small item k in comparison with p. (The
last term in brackets is the scalar product of two vectors p+k/2
and E; �1(2) are the electron wavefunctions in the lower
(upper) band.) This permits one to rewrite the exact matrix
element in the form proportional to

|E0P21(p, p′)|2 exp (−κζ ) , (5)

with

P21(p, p′) = −ih̄
∫

d3ru(2)∗
p (r)∇u(1)

p′ (r) (6)

where pξ = p′
ξ + h̄kξ and u(1,2) are the Bloch amplitudes of

the electron wavefunctions.

2.2. Isotropic spectrum

To begin with, we will discuss the simplest model with an
isotropic quadratic electron spectrum:

ε(1)(p) = p2/2m1 ε(2)(p) = εg + p2/2m2. (7)

Here the mass m1 and gap εg can be both negative and positive.
Further on we will assume that

|m1| � m2.

Therefore we will consider contributions to the current only
from the electrons of the upper (conductance) band 2.

To carry out the integration over quasimomenta, we write
the argument of the δ-function in equation (2) as p2−p2

ω′ where

p2
ω′ = 2M

(
h̄ω − εg

)

and M−1 = m−1
1 + m−1

2 .
In order to solve equation (1) one should take into

account that the quasimomenta pξ and pζ are functions of the
dimensionless trajectory time τ :

pζ = pz cos χ − p⊥ cos τ sin χ

pξ = pz sin χ + p⊥ cos τ cos χ.
(8)

So, the right-hand side of the Boltzmann equation, d(τ ), is a
function of the ‘trajectory time’ τ .

The distribution function should obey the diffuse
reflection boundary conditions at both surfaces of the film

f = 0 for ζ = 0, vζ > 0,

f = 0 for ζ = a, vζ < 0.
(9)

To solve equation (1) we will expand f (ζ, τ ) as a function of
ζ into a Fourier series

f (ζ, τ ) = a−1
∑

n

φn(τ ) exp(2π inζ/a),

so that
∂φn(τ )

∂τ
+ 2πnvζ

�a
φn(τ ) + |vζ |

�
[ fp(0, τ )θ(−vζ )

+ fp(a, τ )θ(vζ )] + γφn = dn(τ ). (10)

Here γ = 1/�t0 is a dimensionless reciprocal collision time,
while t0 is the usual collision time and dn is the Fourier
component of d(ζ, τ ). One can write the solution of this
equation for vζ > 0 at z = a as

φn(τ ) = 1

�

∫ τ

−∞
dτ ′

[
dn(τ

′) − vζ fp(a, τ ′)

× exp

(∫ τ ′

τ

dτ ′′
(

i
2πn

�a
vζ + γ

))]
. (11)

The function fp(a, τ ′) on the right-hand side of the equation
should satisfy the self-consistency condition
1

2
fp(a, τ ) = 1

a�

∫ τ

−∞
dτ ′ ∑

n

[
dn(τ

′)

× exp

(∫ τ ′

τ

dτ ′′
(

i
2πn

�a
vζ + γ

))

− vζ fp(a, τ ′) exp

(∫ τ ′

τ

dτ ′′
(

i
2πn

�a
vζ + γ

))]
. (12)

Making use of the well-known identity∑
k

exp(ikx) = 2π
∑

n

δ(x − 2πn), (13)

one can rewrite equation (12) in the form
1

2
fp(a, τ ) = Gp(τ ) − 2π

�a

∫ τ

−∞
dτ ′vζ (τ

′) fp(a, τ ′)

×
∑

m

δ

(
2π

�a

∫ τ ′

τ

dτ ′′vζ (τ
′′) − 2πm

)
. (14)
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Here

Gp(τ ) = 1

a�

∑
n

∫ τ

−∞
dτ ′ dξn(τ

′)

× exp

(∫ τ ′

τ

dτ ′′
(

i
2πn

�a
vζ (τ

′′) + γ

))
. (15)

The solution of this equation is

fp(a, τ ) = Gp(τ ) − Gp[τ1(τ )] exp
[−γ (τ − τ1)

]
, (16)

where τ1(τ ) is the root of equation

1

�a

∫ τ

τm

dτ ′vζ (τ
′) = m (17)

for m = 1. Here, to verify that equation (16) is the solution of
equation (15) we have made use of the identity

τn (τm(τ )) = τn+m(τ ).

By virtue of equation (8) one can write equation (17) in
the form

τ1 − p⊥
pz

tan χ sin τ1 = − �am2

pz cos χ
+τ − p⊥

pz
tan χ sin τ. (18)

This transcendental equation can be solved for small magnetic
fields (�am2/pω′ � 1) as well as for large ones
(�am2/pω′ � 1). The first situation is not interesting as
there is no oscillation in this region of magnetic fields. For
the second case one has

τ1 = τ − �am2

pz cos χ
. (19)

We also assume that the angle ϑ = π/2 − χ is sufficiently
large, namely

ϑ � pω′/�am2.

Otherwise equation (18) has no solution.
As we treat a spatially nonhomogeneous perturbation of

the electron system, the oscillating part of the distribution
function can be written in the form

φosc
n (τ ) = − 1

�κ
exp

(
−γ

�am2

pz cos χ

) ∫ τ

−∞
dτ ′ d(τ ′)δ(ε(1)

+ h̄ω − ε(2)) exp

[∫ τ ′

τ

dτ ′′
(

i
2πn

�a
vζ + γ

)]
. (20)

We are interested in the oscillating part of the current
density averaged over the width of the film

j ξ = 1

a

∫ a

0
jξ dξ, (21)

i.e. one needs only the Fourier component with n = 0. The
matrix element d(τ ′) entering equation (20) depends on the
amplitudes of the interband transitions P21(p, p′). Later, we
will accept the simplest form

P21(p, p′) = α(p + p′) ≈ 2αp (22)

where α is a dimensionless constant. Such a form of P21(p) is
obvious for an isotropic model and gives a correct estimation
for the magnitude of the effect for a more complicated electron
spectrum. Neither the period of oscillation given by the
asymptotic of the function j ξ for large values of B nor the law
of decrease of the oscillation amplitude with B depend on this
assumption.

The expressions like Re(Eζ0 E∗
ξ0) denote the time average

of two amplitudes. One can see below that for the calculation
of the high magnetic field asymptotic we are interested in
we can omit in |E0p|2 all the terms with the exception of
2 Re(Eζ0 E∗

ξ0)pξ pζ .
So, the oscillating part of the contribution to the current

can be written in the form

j ξ = 2m2e

(2π h̄)3

∫ pω′

0
dpz

∫ 2π

0
dτvξφ

osc
0 (τ ). (23)

As a result one has

j ξ = j0�(χ, B). (24)

Here

j0 = eα2 p4
ω′

π h̄4�κa

(
e

m0ω

)2

Re
(
E0ζ E∗

0ξ

)
(25)

and the function �(χ, B) of an angle χ describes an
oscillatory dependence of the current on the magnitude and
direction of the magnetic field

�(χ, B) = 1

p4
ω′

∫ pω′

0
dpz pz

(
p2

ω′ − p2
z

)
sin

(
�am2

pz cos χ

)

∼ 2

(
pω′ cos χ

�am2

)2

sin

(
�am2

pω′ cos χ

)
cos χ cos 2χ. (26)

One can see that the period of oscillation is

�B = 2πcpω′ cos χ

ea
, (27)

and we get for the asymptotic of the oscillation in magnetic
field

j ξ ∝ 1

B3
sin

(
�am2

pω′ cos χ

)
. (28)

It is assumed here that B � Ba where

Ba = cpω′/ea.

We see that for the magnetooscillation of the photocurrent
we get a negative power of B smaller by 1 than for the
ordinary Sondheimer effect [9]. For tilted magnetic field, the
dependence of the period �B on cos χ corresponds to an
increase of the ‘effective thickness’ of the film according to

a → a/ cos χ.

2.3. Anisotropic spectrum

So far we have considered the simplest case of an isotropic
electron spectrum in both bands. One can also treat the case of
anisotropic spectrum where the lower band is so narrow that

4
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it can be approximated by a constant ε(1)
p = εg. Then the

conservation law in our approximation takes the form

ε(2)
p = h̄ω′, h̄ω′ = h̄ω − εg. (29)

In the case where the constant energy surface (29) (we will call
it the ω′-surface) in the direction of B is closed, one can use the
treatment of [8] (see also [10]) to obtain the asymptotic form of
the current oscillation. Assume that the plane perpendicular to
B is tangential to the ω′-surface at the point p(0)

z . Such a point
as we indicated above is called a limiting point. Then using the
results of [8], 1/pω′ should be replaced by

√
K , where K is

the Gaussian curvature of the ω′-surface at the point p(0)
z . As a

result, one gets the following asymptotic for the ξ -component
of the average current

j ξ ∝ 1

B3
sin

(
aeB

√
K

c cos χ

)
. (30)

The period of the oscillation is

�B = 2πc cos χ/ae
√

K . (31)

Let us now consider oscillations of the second kind. We
will assume now that the ω′-surface is closed but otherwise has
an arbitrary form. For this case not only the first harmonic of
j ξ (B) in the oscillatory part of the average current exists but
also the higher harmonics, in contrast with a quadratic electron
spectrum. However, to calculate the period of oscillation it is
sufficient to take into account only the first harmonic as the
higher harmonics would not change the result for the principal
period. Taking into account equation (26) one can rewrite the
angular function �(χ, B) in the form

�(χ, B) =
∫ pω′

0
dpz L(pz, χ) Re

×
[

exp i

(
2πaeB

c cos χ(∂S/∂pz)

)]
. (32)

where S is the area of the cross section of the ω′-surface formed
by a plane pz = const. Here we have made the following
replacement in the argument of the sine that should be done for
the ω′-surface of an arbitrary form

pz → 1

2π

(
∂S

∂pz

)
= m∗vz. (33)

The function L(pz, χ) is proportional to the matrix elements
of electron–light interaction and is a smooth function of pz and
cos χ . Its exact form is immaterial for our purpose. We come to
the conclusion that for an arbitrary value of pz the distribution
function is an oscillating function of B with period

�B = c cos χ(∂S/∂pz)/ae (34)

that depends on the value pz determining the cross section.
An oscillation of the second kind exists provided the

quantity (
1

2π

∂S

∂pz

)−1

= 1

m∗vz

has an extremum at some value of pz = p0, so that in the
vicinity of the extremum

1

m∗vz
=

(
1

m∗vz

)∣∣∣∣
pz=p0

+ 1

2

∂2

∂p2
z

(
1

m∗vz

)∣∣∣∣
pz=p0

(pz − p0)
2.

(35)

Physically this means that the helical pitch of the electron
trajectory in magnetic field passes through an extremum. Then
one can use a saddle-point approximation to calculate the
integral in equation (32). As a result one gets

j ξ ∝ 1

B3/2
D

(
B

�B

)
,

�B = c cos χ

ae

(
∂S

∂pz

)
pz=p0

. (36)

Here D is an oscillating function of its argument with period
1; �B in equation (36) is determined by pz = p0. The exact
form of the oscillation is determined by the form of electron
trajectory on the ω′-surface at pz = p0.

3. Concluding remarks

In summary, we have worked out a theory of oscillation
of the light-induced photocurrent in mesoscopic metal films
as a function of an arbitrarily oriented magnetic field B.
We consider both the simplest example of spherical constant
energy surfaces and closed constant energy surfaces of an
arbitrary form. We have shown that for the second case the
oscillations can be of two types. The first type can be called the
limiting point oscillation as it is associated with a limiting point
of the ω′-surface. It can exist for any type of constant energy
surface, including spheres. The second type of oscillation can
exist for more complicated types of ω′-surfaces. It is associated
with the situation where the helical pitch passes through an
extremum in a region of ω′-surface where the electrons have a
substantial component of the velocity in the plane of the plate.

Indispensable for the observation of this phenomenon is
the (partially) diffuse scattering of electrons from at least one
surface of the sample. Under this condition the oscillation
pattern can be observed in metals. In the case where there is a
specular reflection from one surface of the film its effective
width in the equation for the oscillation period should be
doubled.

There are some essential differences between the
oscillation of the surface current excited by light and the
Sondheimer oscillation. The amplitude of the Sondheimer
oscillation for the average conductivity σ ξξ is proportional
to B−4 for the first type and to B−5/2 for the second type.
The amplitudes for the oscillation of the photocurrent j ξ are
proportional to B−3 and to B−3/2, respectively. The difference
results from nonhomogeneous excitation of nonequilibrium
electrons by the light. The tilt of the external magnetic field
corresponds to an increase of the ‘effective thickness’ of the
film in the oscillation period. This means an enhancement
of the distance an electron has to pass in order to reach the
opposite surface of the film.
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